Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Medicine ; (12): 866-871, 2016.
Article in English | WPRIM | ID: wpr-819901

ABSTRACT

OBJECTIVE@#To examine the acanthamoebicidal effects of ethyl acetate, aqueous and butanol fractions of dried flower buds of Lonicera japonica (L. japonica) Thunb. (Flos Lonicerae) in vitro.@*METHODS@#Acanthamoeba triangularis isolates were obtained from environmental water samples and identified by PCR. They were exposed to ethyl acetate, water and butanol fractions of L. japonica Thunb. at concentrations ranging from 0.5 mg/mL to 1.5 mg/mL. The extracts were evaluated for growth inhibition at 24, 48 and 72 h, respectively. Chlorogenic acid at a concentration of 1 mg/mL was examined for inhibition of encystment.@*RESULTS@#Ethyl acetate fraction at a concentration of 1.5 mg/mL evoked a significant reduction of trophozoite viability by 48.9% after 24 h, 49.2% after 48 h and 33.7% after 72 h chlorogenic acid, the major active constituent of L. japonica Thunb. at the concentration of 1 mg/mL reduced the cysts/trophozoite ratio by 100% after 24 h, 84.0% after 48 h and 72.3% after 72 h. This phenolic compound at concentration of 1 mg/mL concurrent with 0.6% hydrogen peroxide inhibited hydrogen peroxide-induced encystment by 92.8% at 72 h.@*CONCLUSIONS@#Results obtained from this study show that ethyl acetate fraction at 1.5 mg/mL is the most potent fraction of L. japonica Thunb. and its major constituent chlorogenic acid showed the remarkable inhibition of encystment at a concentration of 1 mg/mL.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 866-871, 2016.
Article in Chinese | WPRIM | ID: wpr-951343

ABSTRACT

Objective To examine the acanthamoebicidal effects of ethyl acetate, aqueous and butanol fractions of dried flower buds of Lonicera japonica (L. japonica) Thunb. (Flos Lonicerae) in vitro. Methods Acanthamoeba triangularis isolates were obtained from environmental water samples and identified by PCR. They were exposed to ethyl acetate, water and butanol fractions of L. japonica Thunb. at concentrations ranging from 0.5 mg/mL to 1.5 mg/mL. The extracts were evaluated for growth inhibition at 24, 48 and 72 h, respectively. Chlorogenic acid at a concentration of 1 mg/mL was examined for inhibition of encystment. Results Ethyl acetate fraction at a concentration of 1.5 mg/mL evoked a significant reduction of trophozoite viability by 48.9% after 24 h, 49.2% after 48 h and 33.7% after 72 h chlorogenic acid, the major active constituent of L. japonica Thunb. at the concentration of 1 mg/mL reduced the cysts/trophozoite ratio by 100% after 24 h, 84.0% after 48 h and 72.3% after 72 h. This phenolic compound at concentration of 1 mg/mL concurrent with 0.6% hydrogen peroxide inhibited hydrogen peroxide-induced encystment by 92.8% at 72 h. Conclusions Results obtained from this study show that ethyl acetate fraction at 1.5 mg/mL is the most potent fraction of L. japonica Thunb. and its major constituent chlorogenic acid showed the remarkable inhibition of encystment at a concentration of 1 mg/mL.

3.
Malaysian Journal of Medical Sciences ; : 15-20, 2009.
Article in English | WPRIM | ID: wpr-627757

ABSTRACT

Background: This study assessed several common oxidative indices in subjects infected with intestinal parasites, as well as in colorectal cancer (CRC) patients both with and without intestinal parasites. Method: Serum levels of malondialdehyde (MDA), ferric reducing/antioxidant power (FRAP), and hydrogen peroxide (H2O2) were measured, as were plasma levels of advanced oxidation protein products (AOPP), all according to established methods. The presence of intestinal parasites was confirmed by stool examination. Results: All intestinal parasiteinfected subjects and CRC patients showed the presence of oxidative stress. Thirtysix percent of the CRC patients had intestinal parasitic infections. The levels of H2O2 and FRAP in parasite-infected subjects were significantly higher than in CRC patients, but these levels were significantly lower in the CRC patients with parasitic infections. Conclusion: Parasitic infection and CRC may contribute to oxidative stress independently, but when present together, the oxidative stress burden imposed by parasites may be attenuated.

SELECTION OF CITATIONS
SEARCH DETAIL